
Audio Engineering Society

Conference Paper
Presented at the Conference on

Audio for Virtual and Augmented Reality
2016 Sept 30 – Oct 1, Los Angeles, CA, USA

This conference paper was selected based on a submitted abstract and 750-word precis that have been peer reviewed by at
least two qualified anonymous reviewers. The complete manuscript was not peer reviewed. This conference paper has been
reproduced from the author’s advance manuscript without editing, corrections, or consideration by the Review Board. The
AES takes no responsibility for the contents. This paper is available in the AES E-Library (http://www.aes.org/e-lib), all rights
reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the
Audio Engineering Society.

Perceptual weighting of binaural information: toward an
auditory perceptual “spatial codec” for auditory augmented
reality
G. Christopher Stecker1 and Anna C. Diedesch1,2,3

1Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine
2Oregon Hearing Research Center, Oregon Health & Science University
3National Center for Rehabilitative Auditory Research, Portland VA Medical Center

Correspondence should be addressed to Chris Stecker (cstecker@spatialhearing.org)

ABSTRACT

Auditory augmented reality (AR) requires accurate estimation of spatial information conveyed in the natural scene,
coupled with accurate spatial synthesis of virtual sounds to be integrated within it. Solutions to both problems
should consider the capabilities and limitations of the human binaural system, in order to maximize relevant over
distracting acoustic information and enhance perceptual integration across AR layers. Recent studies have measured
how human listeners integrate spatial information across multiple conflicting cues, revealing patterns of “perceptual
weighting” that sample the auditory scene in a robust but spectrotemporally sparse manner. Such patterns can be
exploited for binaural analysis and synthesis, much as time-frequency masking patterns are exploited by perceptual
audio codecs, to improve efficiency and enhance perceptual integration.

1 Introduction

Perceptual audio coding has been tremendously suc-
cessful in a wide range of audio applications requiring
significant data compression with minimal perceptual
impact. Psychoacoustic codecs (e.g., AAC, AC-3, and
MP3) provide not only smaller file sizes and lower bit
rates for digital audio, but also support higher chan-
nel counts and more detailed scene-based audio rep-
resentations. The technological development of these
algorithms dates back roughly 30 years, but the psy-
choacoustical foundation of that work dates back much

further. Beginning in the 1930s, Harvey Fletcher and
colleagues at Bell Labs worked to quantify spectral and
temporal patterns of auditory excitation and masking in
the ear [7]. Excitation patterns, or masking patterns, de-
scribe how sounds are represented in cochlear activity
and how these representations interact when multiple
sounds are presented simultaneously. Thus, the patterns
can be used to identify the components of a signal that
are most and least important to auditory perception due
to such interactions. A major insight is that unmasked,
audible, components are sparsely distributed in time
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Fig. 1: Illustration of spatial cue weighting functions. In (a), a brief stimulus spans a range of frequency components
(0.5–8 kHz, vertical axis) and a temporal duration divided into eight segments for plotting (horizontal axis).
The relative impact of spatial cues in each spectrotemporal bin is plotted by the size of the circles and
comprises the “spectrotemporal weighting function,” or STWF. The illustration combines three features
established by prior research: (1) dominance of the sound onset [1, , see (b)], (2) upweighting of ILD
cues near sound offset [2, 3], and (3) dominance of ITD cues in low-frequency components [4, 5]. In
(b), temporal weighting functions (TWF) are plotted for localization of narrowband click trains (4 kHz
center frequency, repeating at 5-ms ICI) in the free-field. Weights were normalized to sum to 1.0 across
all 16 clicks and plotted against click number. Error bars indicate standard error of the mean across 5
listeners. Onset dominance and upweighting are both clearly present in anechoic TWFs (blue lines). Red
lines indicate stimuli presented in a 10 m by 10 m room, simulated using the image method [6] with four
side walls (α = 0.5) and reflections up to 13th order. The room condition dramatically enhanced the weight
applied to onset cues, consistent with the importance of onsets in reverberant listening.

and frequency; much of the remaining sound can be
discarded without major perceptual effects. Algorithms
that exploit that knowledge can achieve dramatic com-
pression with minimal perceptual effects.

This paper explores an analogous phenomenon in the
spatial domain, specifically the perceptual weighting of
auditory spatial cues by human listeners. Like masking
patterns, the patterns of spatial cue weighting can be
used to identify the most and least important spatial fea-
tures of sounds. Recent evidence suggests that much as
in masking patterns, the most relevant spatial features
of sounds are distributed rather sparsely in both time
and frequency [8]. Exploiting this knowledge could
lead to algorithms for data compression in spatial audio
synthesis and to improvements in spatial audio analysis,
two areas of particular relevance to audio applications
in virtual reality (VR) and augmented reality (AR).

Spatial psychoacoustics provides a clear picture of the
acoustical cues that drive listeners’ perception of au-
ditory space. These include interaural differences of

time (ITD) and level (ILD) as well as monaural spectral
features. All of these are captured by the linear time-
invariant features of the (anechoic) HRTF. In fact, the
HRTF provides a reliable-seeming “lookup table” for
these cues: at any given frequency, each possible sound-
source location gives rise to a particular combination
of ITD, ILD, and intensity values. One might therefore
consider the various cues to be in agreement with one
another and with the sound-source location. This situa-
tion holds, however, only for isolated sources presented
in anechoic conditions. Competing sounds, echoes, and
reverberation profoundly alter these cues, and they do
so in a cue-, frequency-, and time-dependent manner.
Thus, in real-world listening cues often disagree, and
there is no simple correspondence between cue values
and source locations. Perceptual weighting studies re-
veal that the human auditory system encodes spatial
information in a way that is robust to these types of
effects.

In a typical reverberant space, direct sound is followed
by a series of early reflections and finally a diffuse
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reverberant sound field. Thus, the very earliest arriv-
ing sound (the “first wavefront” [9]) carries mainly
direct (source) cues, whereas the ITD, ILD, and spec-
tral cues of later-arriving sound are distorted by room
effects. Specifically, ITD cues fluctuate erratically over
time, and ILD cues diminish toward zero, in rever-
beration [10]. Depending on the perceptual correlates
of these changes, listeners’ perception in reverberant
space ought to evolve over time, and sound sources
should appear to move around. This is not the case for
normal perception in reverberant environments, how-
ever; rather, listeners perceive a stable auditory scene
with sources that remain fixed unless in actually motion.
How is this accomplished?

One answer is that the brain emphasizes the most reli-
able spatial cues: ITD and ILD at onset, ILD at offset,
and so forth. The brain discounts cues that are likely
to be impacted negatively by echoes and reverbera-
tion. This differential weighting of auditory spatial
cues provides a form of perceptual constancy for audi-
tory space. For weighting of cues over time, the process
can be characterized by “temporal weighting functions”
(TWF) [11, 12, 13]. Similarly, binaural cues also differ
in reliability across frequency, so there is an equivalent
set of spectral weighting functions. We can put the
two together in the form of spectro-temporal weighting
functions for binaural-cue sensitivity. An illustration
appears in Fig. 1a.

Audio rendering for VR has typically attempted to accu-
rately reproduce the physical features of spatial audio,
for example by capturing HRTFs and binaural room
impulse responses (BRIR). The goal is to present the
“correct” acoustical cues—with equal weight—at the
listener’s ear, under the assumption that correct cues
will result in realistic perception of the virtual audi-
tory scene. Our current understanding of spatial cue
weighting, however, suggests an alternate approach that
maximizes the fidelity of highly weighted spatial cues
at the expense of weakly weighted ones.

An additional constraint in AR but not VR applications
is the need to seamlessly integrate spatial information
across multiple layers of synthetic and natural sound.
Satisfying that constraint will require systems that can
track and predict how listeners perceive a given scene
in order to synthesize new layers in a perceptually con-
sistent manner. Psychoacoustic models of spatial cue
weighting will significantly benefit this process by em-
phasizing the most robust and critical spatial features
of sound.

Making use of perceptual weighting for applications
in audio for VR and AR requires two steps: (1) the
estimation of spatial cue weighting functions and (2)
the application of those functions to spatial sound syn-
thesis. In the next sections, we describe examples of
each.

2 Estimation of spatial cue weighting
functions

Work in our laboratory has focused on quantifying cue-
weighting across spatial cue type [e.g. ITD versus ILD
14], across frequency, and particularly over time. Here,
we will focus on the latter as an example of both the
estimation of spatial cue weighting and its use to guide
spatial audio synthesis.

Numerous studies have used statistical regression meth-
ods to recover TWFs for auditory spatial cues (e.g.,
[11, 12, 13]). In this approach, listeners make spatial
judgments of sounds whose spatial cues vary randomly
and by a small amount over time. An example is illus-
trated in the inset of Fig. 1b. The vertical dimension
represents time and the horizontal dimension represents
stimulus location in azimuth. The red dots indicate
brief segments of a sound, each of which is presented
from a slightly different location. The drawing illus-
trates a single trial; other trials would present a different
set of random spatial variations, and a different overall
azimuth.

For such sounds containing multiple temporal segments
i, TWFs can be estimated by regression of listeners’
localization responses θR onto the independent segment
locations θi:

θ̂R =
16

∑
i=1

βiθi + k, (1)

Relative weights wi, which make up the TWF, are typi-
cally estimated after normalizing the regression coeffi-
cients βi over the stimulus duration (the bias term k is
typically not included in the TWF):

wi =
βi

∑
16
j=1 β j

. (2)

The weights wi thus quantify the relative influence of
binaural cues in each temporal segment on the listeners’
spatial judgments.

Many past studies have estimated TWFs using trains
of rapidly presented clicks. Such stimuli are simple
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to temporally segment (i.e. each click is a segment),
and gaps between clicks help to minimize acoustical
interactions between successive segments. Fig. 1b
plots TWFs (wi versus time) for brief trains of filtered
clicks presented at 5-ms interclick interval (ICI) from
a 360◦ array of 64 ear-height loudspeakers in the Van-
derbilt Bill Wilkerson Anechoic Chamber Laboratory.
Stimuli varied in azimuth across a range of ±56.25◦,
and individual clicks were perturbed up to ±11.25◦ by
selecting a loudspeaker for each click.

When the experiment was conducted in simple ane-
choic space, TWFs (blue line in Fig. 1b) revealed clear
onset dominance and “upweighting” of later clicks [2],
two features that have been repeatedly demonstrated in
localization tasks of this type [12, 3, 13]. The exper-
iment was repeated in a virtual room condition. The
image method [6] was used to simulate a 10 m by 10 m
room with four lateral walls (front, back, and two sides,
all α = 0.5). Each simulated reflection—up to 13th
order—was presented at the correct azimuth (rounded
to the nearest loudspeaker), intensity, and delay for
the calculated path. Reverberation time T60 was 0.3
s. TWFs measured in the simulated room (red lines)
revealed significantly stronger onset dominance, con-
sistent with the expected immunity of onset cues to
distortion by echoes.

The TWFs plotted in Fig. 1b and in past studies illus-
trate that listeners’ spatial impression is dominated by a
subset of the potentially available spatial cues, namely
the cues available at sound onset and in some cases
offset [13]. In particular, the middle portion of a brief
sound appears to have nearly zero influence on listen-
ers’ spatial impression. This suggests that for simple
sounds like these, manipulation of the onset alone (or
onset+offset) should be sufficient to control spatial per-
ception. But what about more complex sounds such as
noises or sounds with modulated envelopes? A sepa-
rate experiment measured TWFs for modulated noises
(Fig. 2).

3 TWF for amplitude-modulated sounds

As illustrated in Fig. 2a, stimuli were trains of 1-ms
white-noise bursts, repeating at a rate of 500 Hz (i.e.,
2-ms ICI). Stimuli were delivered over headphones,
with ITD and ILD manipulated in a correlated fashion
across a range of ±600 µs and ±6 dB. Thus, values
of θi in Eq. 1 were ITD/ILD combinations rather than
loudspeaker azimuths. On each trial, listeners indicated

the perceived lateral position (θR) on a touchscreen
monitor. In one condition, stimuli were presented with
a flat amplitude envelope (i.e., all noisebursts were
presented at equal intensity). In other conditions, si-
nusoidal amplitude modulation (AM) was applied at
three rates resulting in one, two, or four AM cycles
over the stimulus duration. TWFs obtained in all four
conditions are plotted in Fig. 2b. These reveal clear
onset dominance in the flat condition. Note that the
greater onset dominance compared to Fig. 1b is con-
sistent with previous studies of TWF at 2-ms ICI [12].
For AM conditions, the largest weights occurred during
the earliest rising part of each modulation period. Note
that for all three AM conditions, “click 1” was actu-
ally silent; the largest weights were always obtained
on the very first non-silent click (click 2) despite its
low amplitude. In contrast, the most intense clicks re-
ceived very low weights, as did clicks aligned with the
falling phase of the envelope. These results are consis-
tent with the dominance of the overall onset in sounds
with flat envelopes, and with the importance of rising
envelopes for ITD processing at high [16] and low [17]
frequencies.

The results of TWF measurements as illustrated in Figs.
1 and 2 reveal consistent patterns in listeners’ weighting
of binaural and spatial information over the durations
of brief sounds. Such patterns could be exploited in
“binaural listening” algorithms that attempt to estimate
listeners’ spatial perception of real-world sound, for
example to align AR content to that perception. The pat-
terns could also be used to guide spatial audio synthesis,
a problem that is taken up in the following section.

4 Weighting-guided synthesis of spatial
audio

Spatial cue weighting patterns (e.g., TWFs) may be
exploited similarly to masking patterns that reflect
cochlear excitation [7]. In the same way that mask-
ing patterns suggest which components of a sound will
have the most impact (and which the least) on audibility
and sound quality, the TWFs suggest which temporal
segments of a sound will have the most impact (and
which the least) on spatial impression. Specifically,
TWF measurements suggest that sound localization is
dominated by spatial cues present during rising enve-
lope slopes. A rather straightforward test of that idea is
to resynthesize sounds with different spatial informa-
tion in the rising versus falling envelope segments. Fig.
3 illustrates such a test.
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Fig. 2: TWFs estimated from amplitude-modulated noises. Stimuli (a) were trains of 1-ms noise bursts presented
at 2-ms ICI. In three conditions, sinusoidal amplitude-modulation (SAM) envelopes were applied with
a frequency of 31.25, 62.5, or 125 Hz. Each of these conditions, along with an unmodulated control
condition, is illustrated in a separate row of panels. Panels in (b) plot TWFs for obtained from regression of
lateralization judgments on ITD/ILD cue values (mean of 8 subjects, ±1 standard error). Gray lines plot the
AM envelopes for reference. Onset dominance is clearly evident in the TWF obtained with the unmodulated
stimulus. A similar result occurred for AM stimuli: the strongest weights were obtained during the earliest
part of the rising SAM envelope (e.g., click 2) in each case. Figure adapted from [15].

Single-syllable words were processed using a 4-channel
click-train vocoder (Fig. 3a). The vocoder extracted
the speech envelope in each of four frequency bands,
centered at 1, 2, 4, and 8 kHz. The four envelopes were
then used to modulate the amplitudes click trains (5-ms
ICI) that matched the filter in spectral frequency. The
envelopes were also used to label clicks according to
the positive (rising, blue) or negative (falling, orange)
slope of the envelope. Stimuli were presented to listen-
ers in the Anechoic Chamber Laboratory, with rising
and falling clicks directed to different loudspeakers
separated by 11.25◦ (Fig. 3b). The overall stimulus
location varied from trial to trial over a range of ±45◦.
Listeners indicated the perceived location of each stim-
ulus using a touch display (Apple iPad).

Judgment data were converted into weights for the
rising-envelope and falling-envelope cues using multi-

ple linear regression:

θ̂R = βriseθrise +β f allθ f all + k, (3)

where θR indicates response azimuth as in Eq. 1, θrise
indicates the azimuth of the loudspeaker active during
the rising envelope, and θ f all the azimuth during the
falling envelope. Rise and fall weights (βrise and β f all)
are plotted in Fig. 3c.

Results support the hypothesis that localization of com-
plex sounds is dominated by the spatial cues present
during rising envelope slopes. They suggest the suffi-
ciency of spatial audio synthesis that manipulates only
the spatial cues carried by rising-envelope clicks. Other
clicks can be rendered at 0◦ (or with uninformative bin-
aural cues) with limited impact on spatial perception:
images would appear laterally compressed to roughly
70+% of full-cue lateralization, but at a potentially sig-
nificant savings in spatial data. Bear in mind that TWFs
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Fig. 3: Illustration of TWF-guided spatial synthesis. Single-syllable words (e.g. “chalk”) were processed by a
4-channel click-train vocoder (a). Amplitude envelopes in each frequency channel were used to separate
each narrowband stimulus into rising-envelope (blue) and falling-envelope (orange) segments. Sounds were
delivered via anechoic 64-channel loudspeaker array (b), with rise and fall segments delivered to different
loudspeakers. Listeners indicated the perceived location of each presentation. Statistical regression of
judgments on loudspeaker locations was used to derive localization weights for rising-envelope (blue) and
falling-envelope (orange) segments (c; bars indicate mean ±1 standard error across 3 listeners). Weighting
analysis indicates that spatial perception was strongly dominated (> 3 : 1) by rising-envelope segments.
When stimuli were presented in a simulated 10 m by 10 m room (as in Fig. 1b), dominance of the
rising-envelope cues was even stronger (> 10 : 1). Figure adapted from [15].

suggest restricting the cues even further; the largest
weights appear tightly clustered in the earliest part of
each rising envelope rather than distributed throughout
it. The current result is only the first of many attempts
to specify this more precisely.

When the same experiment was repeated in the simu-
lated room described in the previous section, the rising-
envelope cues became even more important (Fig. 3c).
That result is consistent with the effects of room simula-
tion on TWFs in Fig. 2, and suggests greater flexibility
in future applications to VR and AR when simulated
or real reverberation is included.

5 Discussion

This paper presents an overview of spatial-cue weight-
ing by human listeners, focusing particularly on tem-
poral weighting as an example. The literature on this
topic suggests that strongly-weighted spatial features
are distributed rather sparsely within most stimuli. That
observation implies a significant potential benefit for
spatial analysis and synthesis of audio for VR and AR:
namely, that psychoacoustical models can be used to
identify and target the most important spatial features
of sound. We have argued that such models be used

similarly to psychoacoustical models of cochlear excita-
tion and masking: for perceptual coding of compressed
spatial data and generation of robust perceptual descrip-
tions of spatial audio elements.

Weighting-guided analysis and synthesis of spatial au-
dio could have numerous applications in entertainment
(surround sound for 3D video), VR (data compression
for rich spatial scenes), and AR (analysis and matching
of synthetic to natural source material). Particularly
when applied to AR, these approaches could also im-
pact audiology. Future hearing-aid technology will not
just restore audibility through amplification. Instead,
devices will more directly alter or augment spatial as-
pects of the auditory scene (target identification, de-
reverberation, binaural listening assistants, etc.).

Two limiting aspects of the current paper should be con-
sidered. First, the experiments presented in this paper
involved natural or simulated open-field sound. Real
AR applications, however, will involve fitting listen-
ers with input transducers (presumably, microphones)
that capture and analyze external audio, and output
transducers (speakers or bone vibrators) the deliver
the processed sound. That raises important questions
about how perceptual weighting might be altered by
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cue distortions in the devices themselves and/or in the
interaction of synthetic and natural sound. Will audio
AR devices preserve the fidelity of the natural auditory
scene? How are the binaural cues that listeners use af-
fected by electroacoustic processing and reproduction?
How does reverberation factor in? In our lab, we have
investigated these issues through ear-canal recordings
with binaural signal-processing devices in individual
listeners. Diedesch [10] made such recordings made
with occluding and open-fit devices across a range of
simulated room conditions. Computational analyses
extracted the frequency and time-specific binaural cues
available in the recordings. The extracted cues can be
used to power STWF analyses of stimuli as they might
be experienced in auditory AR.

A second limitation of the current work is that percep-
tual weighting has only been assessed in brief stimuli
whose components are strongly perceived to “belong”
to the same auditory object. A number of studies have
suggested that perceptual weighting is dramatically im-
pacted by auditory grouping [18, 19]. This is particu-
larly critical for VR and AR because incorrect grouping
of spatial features across objects leads to binaural in-
terference and reduced spatial awareness. It may be
that the approaches described in this paper will require
models of how listeners understand the auditory scene
at a cognitive level. Conversely, exploiting top-down
influences on perceptual organization could provide a
means to dramatically augment the auditory scene, for
example by spatially combining multiple distractors
and isolating them from target sounds.

6 Summary

1. Spatial hearing by human listeners relies on audi-
tory spatial cues that are distributed in time, fre-
quency, and cue type.

2. Perceptual weighting of these cues strongly em-
phasizes robust features (e.g., rising envelope
slopes) that are distributed sparsely in time and
frequency.

3. Spatial cue weighting functions (e.g. TWFs) can
be used to identify the spatial features most crit-
ical for compelling spatial perception. Synthesis
resources can be targeted to these features.

4. This process is analogous to the use of cochlear
masking patterns [7] in perceptual audio coding.

It suggests the future development of “spatial
codecs” that operate similarly in the spatial do-
main.

5. VR and AR applications will benefit from these
developments by using higher-quality and more
efficient spatial representations, and perceptual
bases for altering and augmenting the auditory
scene.
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